Customization: | Available |
---|---|
After-sales Service: | on-Line Service |
Warranty: | One Year |
Suppliers with verified business licenses
Unveiling the pinnacle of engineering excellence: the High-Performance Vertical Quenching Fluidized Bed Tube Furnace for Samples. This marvel of modern technology is a masterpiece of innovation and efficiency. Within its meticulously engineered structure lies a state-of-the-art material preheating furnace, reaction furnace, gas preheating furnace, an intuitive control cabinet, robust gas supply system, and sophisticated feeding and collection devices. The furnace chamber, constructed from lightweight ceramic fiber, promises seamless operation with an impressive sliding left-right opening that ensures effortless access and supports sintering under a variety of inert atmospheres. Our premium alloy heating wires, the hallmark of our furnace, propel rapid heating with astounding features: supreme high-temperature resistance, steadfast oxidation resistance, remarkable corrosion resistance, and lightning-fast temperature escalation. Revel in the precision of our intelligent PID 30-segment temperature control that guarantees impeccable temperature consistency and accuracy at every stage.
Discover the comprehensive, elegantly translated specifications of our extraordinary furnace, meticulously presented in an intuitive English table format for your utmost convenience and understanding:
Component | Specification |
---|---|
Structure | Double-layer shell, manually lifted structure |
Operating Temperature | < 1000°C |
Temperature Control | PID 30-segment programmable automatic control |
Heating Element | High-quality resistance wire |
Furnace Tube Material | High-quality metal tube |
Quartz Tube Size | ≈ Φ80mm × 1000mm (customizable per customer requirements) |
Temperature Protection | Over-temperature and segment failure alarm |
Heating Rate | Adjustable 0-10 °C/min |
Measuring Element | Type N thermocouple |
Sealed Feeding Device | Sealed feed chamber: Easy-open top cover, uniform volume, pre-installed gas inlet. |
Component | Specification |
---|---|
Structure | Double-layer shell, manual vertical sliding opening; reaction furnace and gas preheating furnace can be opened independently. |
Maximum Temperature | 1200°C |
Temperature Control | PID 30-segment programmable automatic control |
Heating Element | High-quality resistance wire |
Furnace Tube Material | High-quality metal tube |
Quartz Tube Size | ≈ Outer diameter 100mm × 2500mm (customizable per customer requirements) |
Heating Zone | ≈ 1800mm, 6 zones (independently adjustable, customizable) |
Temperature Protection | Over-temperature and segment failure alarm |
Heating Rate | Adjustable 0-10 °C/min |
Measuring Element | Type N thermocouple |
Sealing System | Top: Double-layer water-cooled sealing flange with automatic feed port, manual feed port, adjustable gas sampling port (for thermocouple/gas probe), and exhaust port. Bottom: Sealing flange with gas inlet, connected to a sealed collection chamber (with pre-installed gas inlet). |
Compatible Gases | Any inert gas (high purity, positive pressure < 0.02MPa) |
Component | Specification |
---|---|
Gas Channels | Supports 4 gas sources simultaneously (Note: Inert gases recommended; user must provide safety devices for hazardous gases.) |
Flow Meter | Mass flow controller (MFC) |
Our Vertical Fluidized Bed Tube Furnace is a paragon of engineering, featuring precision-designed feeding and discharge chambers that facilitate seamless, uninterrupted material handling. This significantly enhances the efficiency of heat treatment processes. The advanced fluidized bed, with its vertically aligned furnace tube and brilliantly circular heating element distribution within the chamber, is tailored for annealing and tempering small steel components, alongside pioneering vertical CVD coating applications. This design ensures consistently superior results.
Marrying versatility with excellence, our system functions seamlessly under precisely controlled atmospheric or vacuum conditions and can also be utilized as a conventional tube furnace. It is the quintessential solution for university laboratories, research institutes, and other esteemed scientific facilities, poised to amplify your research capabilities to new heights.
Parameter | Specification |
---|---|
Heating Zone Length | Dual-zone, 400mm + 400mm (customizable per customer requirements) |
Furnace Tube Dimensions | Outer diameter: 100mm × Length: 1200mm (customizable) |
Furnace Tube Material | Stainless steel |
Automatic Feeding System | Customizable design with: - Gas inlet at tube bottom - Screw conveyor for heavy particle extraction - Top tube configuration tailored to requirements |
Parameter | Specification |
---|---|
Operating Temperature | ≤1000°C |
Temperature Sensor | Type N thermocouple |
Control System | Intelligent 30-segment PID programmable control: 1. AI-based PID adjustment with self-tuning 2. Multi-stage heating/cooling programs 3. Accuracy: ±1°C 4. Over-temperature/breakage protection (auto power cutoff) 5. Touchscreen operation with data logging/export |
Heating Rate | Recommended ≤10°C/min (adjustable per process needs) |
Heating Element | Resistance wire |
Furnace Lining Material | Dual-layer alumina fiber boards (excellent insulation, high reflectivity, uniform temperature): - 1200°C alumina fiber - 1400°C alumina fiber |
Parameter | Specification |
---|---|
Flange | Stainless steel vacuum flange (easy disassembly) |
Sealing System | O-ring compression seal between tube/flange: - Reusable, leak-tight, quick-release design |
Fluidization Zone | 1. Uniform gas distribution through reaction zone 2. Solid particles suspended by gas flow in heating zone 3. Openable furnace body for post-experiment quartz tube/particle removal |
Note | Excessive gas flow may carry particles beyond heating zone; adjust flow rate based on particle size. |
Shell Structure | Double-layer carbon steel shell with air cooling, openable design |
Furnace Orientation | Vertical structure |
Flange (Fluidized Bed) | Rubber-sealed flange (with analog vacuum gauge) |
Heating Zone Length | Five heating zones, 100mm each, total length 500mm (customizable per customer requirements) |
---|---|
Furnace Tube Size | Diameter 25mm × 1200mm (customizable per customer requirements) |
Tube Material | High-purity quartz tube with built-in 40-90μm sintered plate (customizable) |
Operating Temp. | ≤1100°C |
Max. Temperature | 1200°C |
Temperature Sensor | N-type thermocouples (5 units) |
Harness the unmatched power of AI-driven PID regulation, complete with auto-tuning and sophisticated multi-segment programming, to achieve optimal performance every time.
Delight in the precision of PID temperature control, offering customizable, programmable heating and cooling stages for precise thermal management.
Experience unparalleled temperature precision, ensuring operations with a deviation as minimal as ±1°C, reflecting our commitment to excellence.
Benefit from an array of comprehensive safety features, including over-temperature and power failure protection with automatic circuit cutoff, ensuring peace of mind and operational security.
Utilize the auto-tuning function to achieve meticulous temperature calibration, ensuring consistent, precise results each time.
Embrace the convenience of advanced touchscreen operation, featuring data logging and export functionalities that streamline your workflow with cutting-edge efficiency.
Temp. Control Accuracy | ±1°C |
---|---|
Safety Protection | Over-temperature and power failure protection |
Heating Rate | Recommended 10°C/min (adjustable per process requirements) |
Heating Element | Resistance wire |
Furnace Chamber Material | Polycrystalline fiber insulation (excellent thermal insulation, high reflectivity, uniform temperature distribution) |
Flange | Stainless steel vacuum flange (easy disassembly) |
Sealing System | O-ring compression seal (reusable, high airtightness, easy removal) |
Achieve unmatched uniformity as reaction gas flows effortlessly through the reaction zone, ensuring optimal particle suspension for superior results.
Revolutionary gas flow techniques suspend solid particles within the heating zone, maximizing deposition precision and experimental accuracy.
Enjoy the simplicity of an open-body design, facilitating effortless removal of the quartz tube and processed particles post-experimentation, enhancing workflow efficiency.
Note:Ensure the flawless operation of your experiments by meticulously adjusting the gas flow rate according to the particle size. This prevents the excessive flow from carrying particles beyond the heating zone, thereby maintaining the integrity of your experimental process.
Furnace Structure | Vertical design |
---|---|
Gas Flow Control | Equipped with argon float flow meters (flow range customizable per user needs) |
Gas Ports | Two inlets (bottom), one outlet (top) |
Parameter | Description |
---|---|
Display | LED or LED touch screen (customizable) |
Working Temperature | ≤1100°C |
Heating Rate | 0-10°C/min |
Temperature Uniformity | ±1°C |
Tube Diameter | 950×600 mm (OD) (customizable upon request) |
Heating Length | 200 mm (customizable upon request) |
Heating Elements | Resistance wire |
Tube Material | High-purity quartz tube |
Chamber Material | Alumina fiber |
Thermocouple | Type N |
Temperature Control | PID automatic control via SCR (thyristor) power regulation, with phase-angle triggering and current-limiting resistance. 30 programmable segments for precise heating/cooling rate and dwell time control. Built-in PID auto-tuning, with overheat and thermocouple break protection. Over-temperature protection and alarm for unattended operation. |
Tube Furnace Section | Display | LED or LCD touch screen (optional at extra cost) |
---|---|---|
Working Temperature | ≤1600°C | |
Heating Zone | Single heating zone, 300mm (customizable per customer requirements) | |
Heating Element | Silicon molybdenum (SiMo) rods | |
Thermocouple | Type B | |
Temperature Control Accuracy | ±1°C | |
Tube Size | OD 50mm (customizable per customer requirements) | |
Material | Alumina tube | |
Temperature Control | PID automatic control via SCR power regulation | |
Heating Program | 30-step programmable | |
Heating Rate | 0-10°C/min | |
Warranty | 1-year warranty (consumables such as heating elements are not covered) |
Parameter | Specification |
---|---|
Maximum Temperature | 1200°C |
Continuous Working Temperature | ≤1100°C |
Furnace Structure | Double-layer shell design with automatic cooling system |
Heating Rate Recommendation | ≤10°C/min |
Tube Material | High-purity quartz tube |
Chamber Material | Premium high-purity alumina polycrystalline fiber chamber formed by Japanese vacuum adsorption technology, featuring excellent insulation, high reflectivity and uniform temperature distribution |
Tube Dimensions | Tapered tube φ10φ8600mm (customizable) |
Heating Zone Length | 200mm (customizable) |
Flange | Stainless steel sealing flange with quick-disconnect design, equipped with precision needle valve |
Temperature Control System | 1. AI-based PID control with auto-tuning 2. 30-segment programmable heating/cooling 3. Control accuracy ±1°C 4. Over-temperature and thermocouple failure protection 5. Automatic temperature calibration |
Heating Element | Resistance wire |
Temperature Sensor | Type N thermocouple |
Gas Inlet/Outlet | Integrated into flange |
Multi-station Tube Furnace - The Pinnacle of Innovation
This furnace utilizes high-purity quartz tubes as its exquisitely refined reaction chamber, perfectly operating within a temperature spectrum of300°C to 1100°C.The control system of this distinguished series isinternationally advanced,deliveringunparalleled safety, steadfast reliability, and user-centric operation.It boastsprecise temperature control (±1°C), exceptional thermal insulation, superior temperature uniformity, and dual compatibility with vacuum/atmosphere environments..
Widely employedin cutting-edge experimentation and boutique production atprestigious universities, leading research institutes, and dynamic industrial enterprises..
Parameter | Specification |
---|---|
Furnace Structure | Double-shell design |
Furnace Material | High-purity alumina polycrystalline fiber |
Maximum Temperature | 1200°C |
Working Temperature | 1100°C |
Recommended Heating Rate | ≤10°C/min |
Tube Material | High-purity quartz |
Tube Dimensions | OD: 50mm × ID: 44mm × Length: 1000mm (customizable) |
Heating Zone Length | 200mm (customizable) |
Rotation Mechanism | 180° multi-angle rotatable chamber, detachable and height-adjustable |
Flange | KF quick-release stainless steel sealing flange |
Temperature Control System | <ul><li>AI-based PID control with auto-tuning</li><li>30-segment programmable heating/cooling</li><li>Control accuracy: ±1°C</li><li>Safety features:<ul><li>Over-temperature protection (auto-cutoff at >1200°C)</li><li>Thermocouple failure protection</li><li>Automatic main power cutoff with visual indicators (ON/OFF lights)</li></ul></li><li>Auto-calibration function</li></ul> |
Heating Element | Resistance wire |
Temperature Sensor | Type N thermocouple |
Parameter | Description |
---|---|
Working Temperature | ≤1300°C |
Shell Structure | Double-layered, electrostatic spray coating |
Furnace Chamber Material | High-purity polycrystalline alumina ceramic fiber, offering excellent thermal insulation, high reflectivity, uniform temperature distribution, and strong resistance to thermal expansion and contraction |
Heating Elements | Premium straight silicon carbide rods |
Heating Rate | Room temperature to 1000°C: ≤10°C/min 1000°C to 1200°C: ≤5°C/min 1200°C to 1300°C: ≤2°C/min |
Temperature Control System | PID regulation, 30-segment programmable automatic control |
Temperature Protection | Over-temperature and thermocouple break alarm |
Temperature Accuracy | ±1°C |
Temperature Sensor | S-type platinum-rhodium thermocouple |
Heating Zones | 4 zones (300+300+300+300 mm), total heating length 1200 mm, independently controllable (customizable upon request) |
Furnace Tube | Corundum tube, Φ60×1800 mm (customizable upon request) |
Door Opening Method | Front side-opening |
Feeding Method | Top feeding (continuous feeding device to be purchased separately by the buyer) |
Flange Design | Top Flange: Equipped with feed inlet, gas inlet, gas dispersion device, and mechanical vacuum pressure gauge Bottom Flange: KF interface for cyclone separator, exhaust pipe connected to safety pressure relief valve and dust filter |
Gas Control System | 2-path mass flow meters |
Precautions | 1. When introducing gas into the furnace tube, a pressure-reducing valve must be installed on the gas cylinder. 2. For sample heating experiments, it is not recommended to close the exhaust and intake valves at the furnace tube flange. If valves must be closed during heating, monitor the pressure gauge closely. If the pressure exceeds 0.02 MPa, immediately open the intake valve to prevent accidents (e.g., tube rupture, flange ejection). 3. When the temperature exceeds 900°C, the furnace tube must not be under vacuum; internal pressure should be maintained at atmospheric level. |
Parameter | Description |
---|---|
Display | LED or LED touch screen (customizable) |
Working Temperature | ≤1100°C |
Heating Rate | 0-10°C/min |
Temperature Uniformity | ±1°C |
Tube Diameter | 950×600 mm (OD) (customizable upon request) |
Heating Length | 200 mm (customizable upon request) |
Heating Elements | Resistance wire |
Tube Material | High-purity quartz tube |
Chamber Material | Alumina fiber |
Thermocouple | Type N |
Temperature Control | PID automatic control via SCR (thyristor) power regulation, with phase-angle triggering and current-limiting resistance. 30 programmable segments for precise heating/cooling rate and dwell time control. Built-in PID auto-tuning, with overheat and thermocouple break protection. Over-temperature protection and alarm for unattended operation. |
Parameter | Description |
---|---|
Heating Zone Length | 300+300 mm, dual-zone (customizable upon request) |
Furnace Tube Size | Φ50×1200 mm (customizable upon request) |
Tube Material | High-purity quartz tube with built-in 5-20μm mesh (customized) |
Working Temperature | ≤1100°C |
Maximum Temperature | 1200°C |
Thermocouple | Type N |
Temperature Control System | Intelligent 30-segment PID auto-control via thyristor power regulation with auto-tuning function Built-in overheat and thermocouple break protection |
Temperature Control Accuracy | ±1°C |
Heating Rate | Recommended 0-10°C/min |
Heating Elements | Resistance wire |
Chamber Material | Alumina ceramic fiber |
Vacuum Flange | Stainless steel vacuum flange with valves and needle valve |
Vacuum Pump | Rotary vane vacuum pump |
Gas System | Two-path float flowmeters for oxygen and acetylene, adjustable for material fluidization |
Parameter | Description |
---|---|
Furnace Structure | Vertical open-type structure with double-layer shell and automatic cooling system |
Furnace Chamber Material | High-purity alumina polycrystalline fiber vacuum-formed chamber with excellent thermal insulation, high reflectivity and uniform temperature distribution |
Continuous Working Temperature | ≤1000ºC |
Heating Rate | Recommended ≤10ºC/min |
Furnace Tube Material | 2520 alloy |
Tube Structure | Dilute phase and dense phase zones connected via transition section, with welded stainless steel side pipes/flanges, top sealed flange with explosion-proof device |
Heating Elements | Resistance wire |
Furnace Composition | Split design: rear half fixed with heating elements embedded in insulation layer, front half openable with uniformly distributed resistance wires (wires bypass side pipes in rear section) |
Dilute Phase Zone | 2520 alloy tube, 500mm heating zone (customizable), lower rear inlet port, thermocouple and mechanical pressure gauge for monitoring, top exhaust connected to dust detection system |
Exhaust End | Tube extends outside furnace body with branch thermocouple and pressure gauge |
Temperature Sensor | Type N thermocouple |
Control System | • Independent control for dense/dilute phases • AI-based PID temperature control with 30-segment programming • ±1ºC accuracy • Phase failure and filter protections • Auto-tuning function |
Instrumentation | Separate display meters for: • 2 dense phase thermocouples • 2 dilute phase thermocouples • 1 exhaust gas thermocouple (All mounted on control panel) |
Presenting the state-of-the-art 1000°C vertical tubular furnace, crafted for swift sample heating under vacuum or protective environments, featuring dual-side heating for extraordinary temperature uniformity. Its vertical design ensures optimal exhaust air flow, and the furnace is elegantly mounted on a mobile stand for easy tube accessibility. The top-mounted lifting mechanism is ingeniously crafted to accommodate a wide range of heating and cooling requirements, making it an indispensable tool for advanced research.
This avant-garde high-temperature fluidized bed furnace is meticulously designed for university laboratories and industrial research centers, delivering unmatched performance in the following applications:
Comprehensive chemical analysis of metals and ceramics, enabling precise evaluation and study.
Thorough physical property measurements that ensure accurate research outcomes.
Precision sintering and dissolution processes that meet exacting industry standards.
Expert heat treatment of small rigid components, including annealing and calcination, tailored for reliability.
Exceptional Advantages of Our Furnace:
Vertical gas flow,ensures optimal removal of reaction byproducts, enhancing the purity of experiments.
Precision dual-zone heating,delivering an impressive ±1°C temperature uniformity for consistent results.
User-friendly ergonomic access,featuring an adjustable height mechanism for ease of use.
Versatile multi-process compatibility,supports operations in both vacuum and atmospheric conditions, adapting to various experimental needs.
Parameter | Specification |
---|---|
Tube Dimensions | 60mm (OD) |
Furnace Door Structure | Openable design |
Shell Material | Stainless steel |
Heating Zone Length | 400×400mm |
Cooling Zone | 200-600mm (final design dependent) |
Tube Material | 310S stainless steel |
Operating Temperature | ≤1000°C |
Heating Rate | 0-10°C/min |
Furnace Lining | Alumina polycrystalline fiber |
Temperature Control | Intelligent 80-segment programmable control with independent zone regulation |
Temperature Accuracy | ±1°C |
Heating Elements | Resistance wire |
Operating Voltage | AC 220V 50Hz single phase |
Maximum Power | Final design dependent |
Thermocouple Configuration | • T1: Chamber temperature monitoring (Zone 1) • T2: Gas temperature control (400°C) • T3: Chamber temperature control (Zone 2) • T4: Load thermocouple (top position for crucible temperature measurement) |
Lifting Mechanism | Sealed vertical lift system for positioning samples between heating zone (Zone 2) and cooling zone |
Our cutting-edge vertical fluidized bed tubular furnace is expertly crafted for CVD experiments focusing on powder surface deposition. It showcases a high-purity quartz tube with a bespoke design, featuring a quartz boat with a customizable porous quartz plate for optimal pore size. The powder sample rests confidently on this plate, while a bottom-fed gas flows through, suspending particles in the heating zone for efficient deposition experiments, pushing the boundaries of research.
Important Note for Optimal Experimentation:To prevent particles from bypassing the heating zone during gas injection, ensure the flow rate is meticulously adjusted to match the particle size, guaranteeing precise experimental procedures.
Distinguished Features of Our Furnace:
Customizable porous quartz plate,designed for superior fluidization, enhancing experiment precision.
Precision gas flow control,ensures consistent particle suspension for accurate results.
Constructed from high-purity quartz,to guarantee absolute chemical inertness, safeguarding your experiments.
Ingenious vertical design,facilitates efficient gas-solid interaction, optimizing experimental efficiency.
Parameter | Specification |
---|---|
Heating Zone Length | 440mm (customizable) |
Furnace Tube Dimensions | Φ60×1000mm (customizable) |
Tube Material | High-purity quartz tube with built-in 0.2mm porous quartz plate (customized) |
Operating Temperature | ≤1100°C |
Maximum Temperature | 1200°C |
Temperature Sensor | Type N thermocouple |
Temperature Control System | Intelligent 30-segment PID programmable control with auto-tuning function |
Temperature Accuracy | ±1°C |
Temperature Protection | Over-temperature and thermocouple break protection |
Heating Rate | Recommended 0-10°C/min |
Heating Elements | Resistance wire |
Furnace Lining Material | Polycrystalline fiber with excellent insulation, high reflectivity and uniform temperature distribution |
Flange | Detachable stainless steel vacuum flange |
Sealing System | O-ring compression seal (reusable, good airtightness) |
|Fluidization Zone Attributes:| 1. Uniform reaction gas flow throughout the zone, ensuring consistent experimental conditions.
2. Gas flow suspends solid particles in the heating zone, promoting thorough interactions.
3. Removable design for convenient tube extraction post-experiment, simplifying maintenance and further research. |
|Critical Notice for Success:| Adjust the gas flow according to particle size to ensure particles remain within the heating zone, securing experiment integrity. |
Additional Features | |
---|---|
Pressure Gauge | Mechanical pressure gauge at gas outlet |
Shell Structure | Double-walled with air cooling system, openable design |
Furnace Structure | Vertical configuration |
Flow Meter | Hydrogen float flow meter for precise fluidization control |
Core Advantages:
Customizable porous plateensures optimal fluidization
Precision temperature controlachieves ±1°C accuracy
Swift access designfacilitates sample handling
Advanced versatile gas flow controlaccommodates different particle sizes
Parameter | Specification |
---|---|
Max Temperature | 1200°C |
Uniform Heating Zone | 120mm × 440mm (Customizable upon request) |
Tube Diameter | 100mm (Customizable upon request) |
Number of Heating Zones | Single zone (Customizable upon request) |
Insulation Material | High-purity alumina fiber lining, reducing heat loss and ensuring high-temperature stability. |
Shell Material | High-quality cold-rolled steel plate, electrostatic powder-coated for a hard and durable finish with excellent rust resistance. |
Furnace Door | Side-opening |
Main Controller | PID 30-segment programmable control Over-temperature alarm Thermocouple break alarm |
Temperature Sensor | Type N thermocouple |
Heating Element | Resistance wire |
Heating Rate | 0-10°C/min |
Elevate your precision and efficiency benchmarks with this advanced equipment, featuring a refined resistance wire heating element. The double-layer shell structure, coupled with an ingenious 30-segment programmable temperature control instrument, utilizes phase-shift triggering and advanced thyristor control to achieve unparalleled accuracy. Constructed with top-tier alumina polycrystalline fiber material, the furnace chamber ensures optimal thermal performance, while the robust stainless steel furnace tube guarantees long-lasting durability. The cleverly designed openable furnace door allows for seamless tube replacement, significantly enhancing operational convenience and efficiency.
Setting a new standard for excellence, the high-temperature vertical tube furnace showcases exceptional advantages. With impeccably uniform temperature distribution and a commitment to maintaining a low surface temperature, it is engineered for rapid heating and cooling rates while prioritizing energy efficiency. This furnace not only meets the highest expectations but consistently surpasses them, providing a superior experience with every use.
Parameter | Specification |
---|---|
Furnace Type | Vertical, openable |
Furnace Material | Alumina refractory fiber |
Heating Element | Resistance wire |
Working Temperature | ≤1000°C |
Heating Rate | Adjustable (0~10°C/min) |
Heating Zones | Dual zones (preheating zone + high-temperature zone) |
Total Zone Length | 200+200 / 300+300 / 400+400 mm (customizable upon request) |
Tube Material | Custom stainless steel tube |
Tube Diameter | 40, 50, 60, 80, 100, 120, 200 mm (customizable upon request) |
Control Mode | Multi-segment intelligent PID programmable control, (reserved communication interface) |
Metal Tube Length | 440mm + 380mm (customizable upon request) |
Temperature Sensor | Type N thermocouple |
After-Sales Service | 1-year warranty, lifetime maintenance (consumables such as high-temperature sealing rings, furnace tubes, and heating elements are not covered) |
Customization | Fluidized bed version available upon request |
Introducing the zenith of quenching technology: the vertical vacuum tube quenching furnace, outfitted with cutting-edge molybdenum disilicide (MoSi2) heating elements. Nestled within its robust double-layer shell structure lies an 80mm-diameter corundum tube and a liquid-sealed container, meticulously crafted for the quenching of samples. This furnace harmoniously blends avant-garde innovation with practical functionality, representing the epitome of technological advancement in furnace design.
Embark on a journey through the wonders of rapid phase transformation research with a device engineered for instant sample immersion from extreme high temperatures (up to 1700°C) into an ice-water or oil bath. Tailored perfectly for laboratory experiments, this equipment offers unprecedented insights into material phase transformations and microstructure properties, solidifying its status as an indispensable tool for pioneering research and discovery.
Parameter | Specification |
---|---|
Furnace Structure | (1) Double-layer shell with air cooling system keeps surface temperature below 50°C. (2) High-purity alumina fiber insulation throughout the furnace chamber. (3) Includes one corundum tube and a stainless steel sealing flange (pre-installed with needle valve and mechanical pressure gauge). (4) Sealed liquid container connected via a corundum tube (180mm limit) ensures contamination-free sample quenching. |
Long-term Working Temp. | 800-1600°C |
Max. Working Temp. | 1700°C |
Heating/Cooling Rate | Below 1200°C: 5°C/min; Above 1200°C: 10°C/min |
Heating Zone Length | 300 mm (customizable) |
Heating Element | U-shaped MoSi2 rods |
Thermocouple | Type B (PtRh-PtRh) |
Chiller | Cools flange ends to protect seals |
Temperature Controller | 1. PID control with 30-segment programming 2. Accuracy: ±1°C 3. Over-temp/thermocouple break protection (auto power cutoff) 4. Auto-tuning function |
Furnace Tube | Material: Corundum (OD: 80mm; ID: 70mm; Length: 1000mm) Customizable. Tube plugs required before use to block thermal radiation. |
Vacuum Flanges & Valves | 1. Top: Stainless steel flange with hook, sample ejection port, and thermocouple interface 2. Bottom: Gate valve + mechanical pressure gauge 3. Bottom flange includes gas inlet |
Quenching Container | 1. Stainless steel liquid tank fixed below tube 2. Manual gate valve between tube and tank 3. Top flange: Hanging mechanism (max 1000g sample) 4. Push-release mechanism for sample quenching 5. Requires 5 PSI argon purge and open gate valve before release |
Vacuum Pump | Standard: Stainless steel vacuum flange with valves. Vacuum range: 10 Pa (mechanical pump); 10<sup>-3</sup> Pa (molecular pump) |
Kejia Electric Furnace unveils the 1600°C small vertical high-temperature tube furnace, an engineering marvel designed for CVD experiments focusing on powder surface deposition. Featuring a furnace chamber made of high-purity alumina fiber, this masterpiece offers effortless operation, precise temperature control, top-tier thermal insulation, and uniform temperature distribution. Supporting atmosphere introduction and vacuum extraction, it stands as an essential component in university laboratories and industrial research facilities. Whether synthesizing carbon nanotubes, coating crystalline silicon substrates, welding metals, or executing heat treatments, it accommodates a spectrum of high-, medium-, and low-temperature CVD processes with unmatched precision and reliability.
Parameter | Specification |
---|---|
Furnace Tube Size | 960×900mm (customizable according to customer requirements) |
Heating Zone Length | 300mm (customizable according to customer requirements) |
Operating Temperature | 1500°C (long-term heating temperature) |
Maximum Temperature | 1600°C |
Temperature Control | Intelligent 30-segment programmable control (optional LCD touch screen) |
Temperature Accuracy | ±1°C |
Safety Protection | Over-temperature and thermocouple break protection |
Heating Rate | Recommended 0~10°C/min |
Heating Elements | Silicon molybdenum rods |
Chamber Material | Polycrystalline ceramic fiber, dust-free, excellent insulation, high reflectivity, uniform temperature field, strong thermal shock resistance |
Flange Connections | Equipped with two stainless steel vacuum flanges, pre-installed with mechanical pressure gauge and stainless steel stop valve |
Sealing System | Silicone O-ring compression seal between furnace tube and flange, easy to disassemble and reusable, excellent airtightness |
Vacuum Level | Dual-stage rotary vane pump: 10² Torr Molecular pump unit: 10 Torr |
Tube Material | Alumina tube |
Airtightness | 4.03×10³ Pa |
Temperature Sensor | Type B thermocouple |
Parameter | Specification |
---|---|
Furnace Tube Size | 950×1000mm (custom sizes available upon request) |
Heating Zone Length | 440mm (customizable) |
Operating Temperature | 1100°C |
Maximum Temperature | 1200°C |
Temperature Control | Intelligent 30-segment programmable control (optional LCD touch screen) |
Temperature Accuracy | ±1°C |
Safety Protection | Over-temperature and thermocouple break protection |
Heating Rate | 0~10°C/min |
Heating Elements | Resistance wire |
Chamber Material | Polycrystalline ceramic fiber - dust-free, excellent insulation, high reflectivity, uniform temperature field, strong thermal shock resistance |
Flange Connections | Standard with two stainless steel vacuum flanges, pre-installed with mechanical pressure gauge and stainless steel stop valve |
Sealing System | Silicone O-ring compression seal between tube and flange - easy disassembly, reusable, excellent airtightness (maintains pressure gauge stability for 12 hours) |
Vacuum Level | Dual-stage rotary vane pump: 10² Torr Molecular pump unit: 10 Torr |
Gas Supply System | Equipped with float flow meter; customers can control gas flow rate using float or mass flow meter |
Tube Material | Fused quartz tube |
Airtightness | 4.03×10³ Pa |
Temperature Sensor | Type N thermocouple |