Customization: | Available |
---|---|
After-sales Service: | on-Line Service |
Warranty: | One Year |
Suppliers with verified business licenses
Introducing the epitome of cutting-edge technology: our High-Performance Vertical Quenching Fluidized Bed Tube Furnace for Samples. As a beacon of innovation and efficiency, this state-of-the-art furnace is crafted with high precision to elevate your operations. It encompasses a material preheating furnace, a sophisticated reaction furnace, a gas preheating furnace, a control cabinet, a gas supply system, a feeding device, and a collection device—all orchestrated for seamless performance. The furnace chamber, constructed with lightweight ceramic fiber, boasts an intuitive sliding left-right opening for effortless access, designed to handle sintering across various inert atmospheres. The heating elements, made from premium alloy heating wires, are engineered for rapid heat conduction, exceptional high-temperature resistance, oxidation resistance, corrosion resistance, and swift temperature escalation. Enjoy unparalleled precision with our intelligent PID 30-segment temperature control system, ensuring optimal temperature regulation at all times.
Explore the excellence of our remarkable furnace with meticulously translated specifications, presented in an easy-to-read English table format for your utmost convenience and clarity:
Component | Specification |
---|---|
Structure | Double-layer shell, manually lifted structure |
Operating Temperature | < 1000°C |
Temperature Control | PID 30-segment programmable automatic control |
Heating Element | High-quality resistance wire |
Furnace Tube Material | High-quality metal tube |
Quartz Tube Size | ≈ Φ80mm × 1000mm (customizable per customer requirements) |
Temperature Protection | Over-temperature and segment failure alarm |
Heating Rate | Adjustable 0-10 °C/min |
Measuring Element | Type N thermocouple |
Sealed Feeding Device | Sealed feed chamber: Easy-open top cover, uniform volume, pre-installed gas inlet. |
Component | Specification |
---|---|
Structure | Double-layer shell, manual vertical sliding opening; reaction furnace and gas preheating furnace can be opened independently. |
Maximum Temperature | 1200°C |
Temperature Control | PID 30-segment programmable automatic control |
Heating Element | High-quality resistance wire |
Furnace Tube Material | High-quality metal tube |
Quartz Tube Size | ≈ Outer diameter 100mm × 2500mm (customizable per customer requirements) |
Heating Zone | ≈ 1800mm, 6 zones (independently adjustable, customizable) |
Temperature Protection | Over-temperature and segment failure alarm |
Heating Rate | Adjustable 0-10 °C/min |
Measuring Element | Type N thermocouple |
Sealing System | Top: Double-layer water-cooled sealing flange with automatic feed port, manual feed port, adjustable gas sampling port (for thermocouple/gas probe), and exhaust port. Bottom: Sealing flange with gas inlet, connected to a sealed collection chamber (with pre-installed gas inlet). |
Compatible Gases | Any inert gas (high purity, positive pressure < 0.02MPa) |
Component | Specification |
---|---|
Gas Channels | Supports 4 gas sources simultaneously (Note: Inert gases recommended; user must provide safety devices for hazardous gases.) |
Flow Meter | Mass flow controller (MFC) |
Our Vertical Fluidized Bed Tube Furnace is a marvel of engineering, equipped with precisely crafted feeding and discharge chambers to facilitate continuous, efficient material processing. The sophisticated fluidized bed, featuring a vertically aligned furnace tube and a strategically arranged circular heating element within the chamber, is perfectly tailored for annealing and tempering heat treatments of small steel components. It also excels in vertical CVD coating applications, ensuring superior results and innovative outcomes.
Our system combines versatility with excellence, capable of operating under precisely controlled atmospheres or vacuum conditions. It seamlessly transitions into a conventional tube furnace, making it the quintessential solution for university laboratories, research institutes, and esteemed scientific facilities. Elevate your research potential with unmatched reliability.
Parameter | Specification |
---|---|
Heating Zone Length | Dual-zone, 400mm + 400mm (customizable per customer requirements) |
Furnace Tube Dimensions | Outer diameter: 100mm × Length: 1200mm (customizable) |
Furnace Tube Material | Stainless steel |
Automatic Feeding System | Customizable design with: - Gas inlet at tube bottom - Screw conveyor for heavy particle extraction - Top tube configuration tailored to requirements |
Parameter | Specification |
---|---|
Operating Temperature | ≤1000°C |
Temperature Sensor | Type N thermocouple |
Control System | Intelligent 30-segment PID programmable control: 1. AI-based PID adjustment with self-tuning 2. Multi-stage heating/cooling programs 3. Accuracy: ±1°C 4. Over-temperature/breakage protection (auto power cutoff) 5. Touchscreen operation with data logging/export |
Heating Rate | Recommended ≤10°C/min (adjustable per process needs) |
Heating Element | Resistance wire |
Furnace Lining Material | Dual-layer alumina fiber boards (excellent insulation, high reflectivity, uniform temperature): - 1200°C alumina fiber - 1400°C alumina fiber |
Parameter | Specification |
---|---|
Flange | Stainless steel vacuum flange (easy disassembly) |
Sealing System | O-ring compression seal between tube/flange: - Reusable, leak-tight, quick-release design |
Fluidization Zone | 1. Uniform gas distribution through reaction zone 2. Solid particles suspended by gas flow in heating zone 3. Openable furnace body for post-experiment quartz tube/particle removal |
Note | Excessive gas flow may carry particles beyond heating zone; adjust flow rate based on particle size. |
Shell Structure | Double-layer carbon steel shell with air cooling, openable design |
Furnace Orientation | Vertical structure |
Flange (Fluidized Bed) | Rubber-sealed flange (with analog vacuum gauge) |
Heating Zone Length | Five heating zones, 100mm each, total length 500mm (customizable per customer requirements) |
---|---|
Furnace Tube Size | Diameter 25mm × 1200mm (customizable per customer requirements) |
Tube Material | High-purity quartz tube with built-in 40-90μm sintered plate (customizable) |
Operating Temp. | ≤1100°C |
Max. Temperature | 1200°C |
Temperature Sensor | N-type thermocouples (5 units) |
Harness the transformative power of AI-based PID regulation with auto-tuning and advanced multi-segment programming, delivering optimal performance.
Enjoy unparalleled precision with PID temperature control, offering customizable programmable heating and cooling phases to suit your needs.
Achieve unrivaled temperature precision, ensuring operations with a deviation of a mere ±1°C for exacting standards.
Experience peace of mind with comprehensive safety features, including over-temperature and power failure protection, featuring automatic circuit cutoff.
Utilize the auto-tuning function for meticulous temperature calibration, guaranteeing consistent and precise experimental results.
Enjoy the simplicity of touchscreen operation, complete with data logging and export capabilities, streamlining workflow with advanced functionalities.
Temp. Control Accuracy | ±1°C |
---|---|
Safety Protection | Over-temperature and power failure protection |
Heating Rate | Recommended 10°C/min (adjustable per process requirements) |
Heating Element | Resistance wire |
Furnace Chamber Material | Polycrystalline fiber insulation (excellent thermal insulation, high reflectivity, uniform temperature distribution) |
Flange | Stainless steel vacuum flange (easy disassembly) |
Sealing System | O-ring compression seal (reusable, high airtightness, easy removal) |
Ensure exceptional uniformity as reaction gas flows seamlessly through the reaction zone, optimizing particle suspension for maximum efficiency.
Revolutionary gas flow suspends solid particles within the heating zone, maximizing both deposition and experimental accuracy.
Benefit from an open-body design, allowing for effortless removal of the quartz tube and processed particles post-experiment, enhancing ease of use.
Note:Ensure optimal experimental outcomes by meticulously adjusting the gas flow rate according to particle size. This critical step prevents undue particle flow beyond the heating zone, safeguarding the integrity of your experiments.
Furnace Structure | Vertical design |
---|---|
Gas Flow Control | Equipped with argon float flow meters (flow range customizable per user needs) |
Gas Ports | Two inlets (bottom), one outlet (top) |
Parameter | Description |
---|---|
Display | LED or LED touch screen (customizable) |
Working Temperature | ≤1100°C |
Heating Rate | 0-10°C/min |
Temperature Uniformity | ±1°C |
Tube Diameter | 950×600 mm (OD) (customizable upon request) |
Heating Length | 200 mm (customizable upon request) |
Heating Elements | Resistance wire |
Tube Material | High-purity quartz tube |
Chamber Material | Alumina fiber |
Thermocouple | Type N |
Temperature Control | PID automatic control via SCR (thyristor) power regulation, with phase-angle triggering and current-limiting resistance. 30 programmable segments for precise heating/cooling rate and dwell time control. Built-in PID auto-tuning, with overheat and thermocouple break protection. Over-temperature protection and alarm for unattended operation. |
Tube Furnace Section | Display | LED or LCD touch screen (optional at extra cost) |
---|---|---|
Working Temperature | ≤1600°C | |
Heating Zone | Single heating zone, 300mm (customizable per customer requirements) | |
Heating Element | Silicon molybdenum (SiMo) rods | |
Thermocouple | Type B | |
Temperature Control Accuracy | ±1°C | |
Tube Size | OD 50mm (customizable per customer requirements) | |
Material | Alumina tube | |
Temperature Control | PID automatic control via SCR power regulation | |
Heating Program | 30-step programmable | |
Heating Rate | 0-10°C/min | |
Warranty | 1-year warranty (consumables such as heating elements are not covered) |
Parameter | Specification |
---|---|
Maximum Temperature | 1200°C |
Continuous Working Temperature | ≤1100°C |
Furnace Structure | Double-layer shell design with automatic cooling system |
Heating Rate Recommendation | ≤10°C/min |
Tube Material | High-purity quartz tube |
Chamber Material | Premium high-purity alumina polycrystalline fiber chamber formed by Japanese vacuum adsorption technology, featuring excellent insulation, high reflectivity and uniform temperature distribution |
Tube Dimensions | Tapered tube φ10φ8600mm (customizable) |
Heating Zone Length | 200mm (customizable) |
Flange | Stainless steel sealing flange with quick-disconnect design, equipped with precision needle valve |
Temperature Control System | 1. AI-based PID control with auto-tuning 2. 30-segment programmable heating/cooling 3. Control accuracy ±1°C 4. Over-temperature and thermocouple failure protection 5. Automatic temperature calibration |
Heating Element | Resistance wire |
Temperature Sensor | Type N thermocouple |
Gas Inlet/Outlet | Integrated into flange |
Multi-station Tube Furnace
This furnace employs high-purity quartz tubes as its refined reaction chamber, operating meticulously within a temperature spectrum of300°C to 1100°C. The control system of this distinguished series isinternationally advanced, providingunmatched safety, unwavering reliability, and user-centric operation. It exhibitsprecise temperature control (±1°C), exceptional thermal insulation, superior temperature uniformity, and dual compatibility with vacuum/atmosphere environments.
Widely employedin pioneering experiments and boutique production atprestigious universities, leading research institutes, and vibrant industrial enterprises.
Parameter | Specification |
---|---|
Furnace Structure | Double-shell design |
Furnace Material | High-purity alumina polycrystalline fiber |
Maximum Temperature | 1200°C |
Working Temperature | 1100°C |
Recommended Heating Rate | ≤10°C/min |
Tube Material | High-purity quartz |
Tube Dimensions | OD: 50mm × ID: 44mm × Length: 1000mm (customizable) |
Heating Zone Length | 200mm (customizable) |
Rotation Mechanism | 180° multi-angle rotatable chamber, detachable and height-adjustable |
Flange | KF quick-release stainless steel sealing flange |
Temperature Control System | <ul><li>AI-based PID control with auto-tuning</li><li>30-segment programmable heating/cooling</li><li>Control accuracy: ±1°C</li><li>Safety features:<ul><li>Over-temperature protection (auto-cutoff at >1200°C)</li><li>Thermocouple failure protection</li><li>Automatic main power cutoff with visual indicators (ON/OFF lights)</li></ul></li><li>Auto-calibration function</li></ul> |
Heating Element | Resistance wire |
Temperature Sensor | Type N thermocouple |
Parameter | Description |
---|---|
Working Temperature | ≤1300°C |
Shell Structure | Double-layered, electrostatic spray coating |
Furnace Chamber Material | High-purity polycrystalline alumina ceramic fiber, offering excellent thermal insulation, high reflectivity, uniform temperature distribution, and strong resistance to thermal expansion and contraction |
Heating Elements | Premium straight silicon carbide rods |
Heating Rate | Room temperature to 1000°C: ≤10°C/min 1000°C to 1200°C: ≤5°C/min 1200°C to 1300°C: ≤2°C/min |
Temperature Control System | PID regulation, 30-segment programmable automatic control |
Temperature Protection | Over-temperature and thermocouple break alarm |
Temperature Accuracy | ±1°C |
Temperature Sensor | S-type platinum-rhodium thermocouple |
Heating Zones | 4 zones (300+300+300+300 mm), total heating length 1200 mm, independently controllable (customizable upon request) |
Furnace Tube | Corundum tube, Φ60×1800 mm (customizable upon request) |
Door Opening Method | Front side-opening |
Feeding Method | Top feeding (continuous feeding device to be purchased separately by the buyer) |
Flange Design | Top Flange: Equipped with feed inlet, gas inlet, gas dispersion device, and mechanical vacuum pressure gauge Bottom Flange: KF interface for cyclone separator, exhaust pipe connected to safety pressure relief valve and dust filter |
Gas Control System | 2-path mass flow meters |
Precautions | 1. When introducing gas into the furnace tube, a pressure-reducing valve must be installed on the gas cylinder. 2. For sample heating experiments, it is not recommended to close the exhaust and intake valves at the furnace tube flange. If valves must be closed during heating, monitor the pressure gauge closely. If the pressure exceeds 0.02 MPa, immediately open the intake valve to prevent accidents (e.g., tube rupture, flange ejection). 3. When the temperature exceeds 900°C, the furnace tube must not be under vacuum; internal pressure should be maintained at atmospheric level. |
Parameter | Description |
---|---|
Display | LED or LED touch screen (customizable) |
Working Temperature | ≤1100°C |
Heating Rate | 0-10°C/min |
Temperature Uniformity | ±1°C |
Tube Diameter | 950×600 mm (OD) (customizable upon request) |
Heating Length | 200 mm (customizable upon request) |
Heating Elements | Resistance wire |
Tube Material | High-purity quartz tube |
Chamber Material | Alumina fiber |
Thermocouple | Type N |
Temperature Control | PID automatic control via SCR (thyristor) power regulation, with phase-angle triggering and current-limiting resistance. 30 programmable segments for precise heating/cooling rate and dwell time control. Built-in PID auto-tuning, with overheat and thermocouple break protection. Over-temperature protection and alarm for unattended operation. |
Parameter | Description |
---|---|
Heating Zone Length | 300+300 mm, dual-zone (customizable upon request) |
Furnace Tube Size | Φ50×1200 mm (customizable upon request) |
Tube Material | High-purity quartz tube with built-in 5-20μm mesh (customized) |
Working Temperature | ≤1100°C |
Maximum Temperature | 1200°C |
Thermocouple | Type N |
Temperature Control System | Intelligent 30-segment PID auto-control via thyristor power regulation with auto-tuning function Built-in overheat and thermocouple break protection |
Temperature Control Accuracy | ±1°C |
Heating Rate | Recommended 0-10°C/min |
Heating Elements | Resistance wire |
Chamber Material | Alumina ceramic fiber |
Vacuum Flange | Stainless steel vacuum flange with valves and needle valve |
Vacuum Pump | Rotary vane vacuum pump |
Gas System | Two-path float flowmeters for oxygen and acetylene, adjustable for material fluidization |
Parameter | Description |
---|---|
Furnace Structure | Vertical open-type structure with double-layer shell and automatic cooling system |
Furnace Chamber Material | High-purity alumina polycrystalline fiber vacuum-formed chamber with excellent thermal insulation, high reflectivity and uniform temperature distribution |
Continuous Working Temperature | ≤1000ºC |
Heating Rate | Recommended ≤10ºC/min |
Furnace Tube Material | 2520 alloy |
Tube Structure | Dilute phase and dense phase zones connected via transition section, with welded stainless steel side pipes/flanges, top sealed flange with explosion-proof device |
Heating Elements | Resistance wire |
Furnace Composition | Split design: rear half fixed with heating elements embedded in insulation layer, front half openable with uniformly distributed resistance wires (wires bypass side pipes in rear section) |
Dilute Phase Zone | 2520 alloy tube, 500mm heating zone (customizable), lower rear inlet port, thermocouple and mechanical pressure gauge for monitoring, top exhaust connected to dust detection system |
Exhaust End | Tube extends outside furnace body with branch thermocouple and pressure gauge |
Temperature Sensor | Type N thermocouple |
Control System | • Independent control for dense/dilute phases • AI-based PID temperature control with 30-segment programming • ±1ºC accuracy • Phase failure and filter protections • Auto-tuning function |
Instrumentation | Separate display meters for: • 2 dense phase thermocouples • 2 dilute phase thermocouples • 1 exhaust gas thermocouple (All mounted on control panel) |
Introducing the state-of-the-art 1000°C vertical tubular furnace, crafted for rapid sample heating under vacuum or protective atmospheres, featuring dual-side heating for unparalleled temperature uniformity. Its vertical structure is designed to ensure optimal exhaust ventilation, while the furnace body is expertly mounted on a movable stand, allowing for effortless tube access. The top-mounted lifting mechanism is ingeniously crafted to accommodate diverse heating and cooling demands, making it a versatile tool for advanced research applications.
This advanced high-temperature fluidized bed furnace is expertly designed for university laboratories and industrial research facilities, providing unparalleled performance in the following areas:
Leading-edge chemical analysis of metals and ceramics
Comprehensive physical property measurements
Precision-driven sintering and dissolution processes
Expert heat treatment of small rigid components, including nuanced annealing and calcination
Unrivaled Advantages:
Innovative vertical gas flowensures optimal removal of reaction byproducts with precision
Precision-engineered dual-zone heatingdelivering exceptional ±1°C temperature uniformity
User-centric ergonomic accessfeaturing a sophisticated adjustable height mechanism
Dynamic multi-process compatibilitysupports both vacuum and atmosphere operations, enhancing functionality
Parameter | Specification |
---|---|
Tube Dimensions | 60mm (OD) |
Furnace Door Structure | Openable design |
Shell Material | Stainless steel |
Heating Zone Length | 400×400mm |
Cooling Zone | 200-600mm (final design dependent) |
Tube Material | 310S stainless steel |
Operating Temperature | ≤1000°C |
Heating Rate | 0-10°C/min |
Furnace Lining | Alumina polycrystalline fiber |
Temperature Control | Intelligent 80-segment programmable control with independent zone regulation |
Temperature Accuracy | ±1°C |
Heating Elements | Resistance wire |
Operating Voltage | AC 220V 50Hz single phase |
Maximum Power | Final design dependent |
Thermocouple Configuration | • T1: Chamber temperature monitoring (Zone 1) • T2: Gas temperature control (400°C) • T3: Chamber temperature control (Zone 2) • T4: Load thermocouple (top position for crucible temperature measurement) |
Lifting Mechanism | Sealed vertical lift system for positioning samples between heating zone (Zone 2) and cooling zone |
The cutting-edge vertical fluidized bed tubular furnace is expertly tailored for CVD experiments focusing on powder surface deposition. It features a high-purity quartz tube with a custom-shaped design, incorporating an innovative quartz boat with a porous quartz plate, customizable for optimal pore size. The powder sample rests on this plate, and a strategically bottom-fed gas flows through, suspending particles in the heating zone for efficient deposition experiments.
Crucial Note:To prevent any particles from bypassing the heating zone during gas injection, ensure the flow rate is meticulously calibrated to match the particle size during experimental procedures.
Distinguished Features:
Customizable porous quartz platedesigned for outstanding fluidization performance
Precision gas flow controlensures consistent and reliable particle suspension
Crafted from high-purity quartzto guarantee absolute chemical inertness
Ingenious vertical designfacilitates efficient and seamless gas-solid interaction
Parameter | Specification |
---|---|
Heating Zone Length | 440mm (customizable) |
Furnace Tube Dimensions | Φ60×1000mm (customizable) |
Tube Material | High-purity quartz tube with built-in 0.2mm porous quartz plate (customized) |
Operating Temperature | ≤1100°C |
Maximum Temperature | 1200°C |
Temperature Sensor | Type N thermocouple |
Temperature Control System | Intelligent 30-segment PID programmable control with auto-tuning function |
Temperature Accuracy | ±1°C |
Temperature Protection | Over-temperature and thermocouple break protection |
Heating Rate | Recommended 0-10°C/min |
Heating Elements | Resistance wire |
Furnace Lining Material | Polycrystalline fiber with excellent insulation, high reflectivity and uniform temperature distribution |
Flange | Detachable stainless steel vacuum flange |
Sealing System | O-ring compression seal (reusable, good airtightness) |
|Fluidization Zone Attributes| 1. Ensures uniform reaction gas flow throughout the zone
2. Gas flow skillfully suspends solid particles in the heating zone
3. Innovative removable design for convenient tube extraction post-experiment |
|Critical Notice| Calibrate the gas flow according to particle size to ensure particles remain optimally positioned within the heating zone |
Additional Features | |
---|---|
Pressure Gauge | Mechanical pressure gauge at gas outlet |
Shell Structure | Double-walled with air cooling system, openable design |
Furnace Structure | Vertical configuration |
Flow Meter | Hydrogen float flow meter for precise fluidization control |
Core Advantages:
Customizable Porous Plate: Experience an elevated level of control with our porous plate, tailored to meet your specific needs. Achieving optimal fluidization has never been more seamless.Ensures Optimal Fluidization: Our innovative designs guarantee a smooth, effective fluidization process, maximizing efficiency and performance at every step.
Precision Temperature Control: Attain the pinnacle of temperature regulation with unparalleled precision, ensuring your processes remain consistently accurate and reliable.Achieves ±1°C Accuracy: Our technology delivers an exceptional accuracy of ±1°C, setting a new standard in precision for temperature-sensitive applications.
Swift Access Design: Navigate effortlessly with our swift access design, engineered to streamline your operational workflow and enhance productivity.Facilitates Sample Handling: Our user-centric design makes sample handling a breeze, providing a seamless and intuitive user experience.
Advanced Versatile Gas Flow Control: Master the art of gas flow management with our advanced system, adaptable to a wide range of applications and conditions.Accommodates Different Particle Sizes: Our flexible system is designed to cater to varying particle sizes, ensuring optimum performance across diverse applications.
Parameter | Specification |
---|---|
Max Temperature | 1200°C |
Uniform Heating Zone | 120mm × 440mm (Customizable upon request) |
Tube Diameter | 100mm (Customizable upon request) |
Number of Heating Zones | Single zone (Customizable upon request) |
Insulation Material | High-purity alumina fiber lining, reducing heat loss and ensuring high-temperature stability. |
Shell Material | High-quality cold-rolled steel plate, electrostatic powder-coated for a hard and durable finish with excellent rust resistance. |
Furnace Door | Side-opening |
Main Controller | PID 30-segment programmable control Over-temperature alarm Thermocouple break alarm |
Temperature Sensor | Type N thermocouple |
Heating Element | Resistance wire |
Heating Rate | 0-10°C/min |
Featuring a sophisticated resistance wire heating element, this equipment embodies a masterclass in precision and efficiency. The double-layer shell structure, coupled with a 30-segment programmable temperature control instrument, employs phase-shift triggering and advanced thyristor control for unrivaled accuracy. Its furnace chamber, constructed of premium alumina polycrystalline fiber material, ensures optimal thermal performance, while the stainless steel furnace tube promises durability. The thoughtfully designed openable furnace door facilitates effortless tube replacement, elevating operational convenience to new heights.
The high-temperature vertical tube furnace sets the standard for excellence with its unparalleled advantages. Offering an impeccably uniform temperature distribution and maintaining a low surface temperature, it is engineered for swift heating and cooling rates while championing energy efficiency. This furnace not only meets but exceeds expectations, delivering a superior experience every time.
Parameter | Specification |
---|---|
Furnace Type | Vertical, openable |
Furnace Material | Alumina refractory fiber |
Heating Element | Resistance wire |
Working Temperature | ≤1000°C |
Heating Rate | Adjustable (0~10°C/min) |
Heating Zones | Dual zones (preheating zone + high-temperature zone) |
Total Zone Length | 200+200 / 300+300 / 400+400 mm (customizable upon request) |
Tube Material | Custom stainless steel tube |
Tube Diameter | 40, 50, 60, 80, 100, 120, 200 mm (customizable upon request) |
Control Mode | Multi-segment intelligent PID programmable control, (reserved communication interface) |
Metal Tube Length | 440mm + 380mm (customizable upon request) |
Temperature Sensor | Type N thermocouple |
After-Sales Service | 1-year warranty, lifetime maintenance (consumables such as high-temperature sealing rings, furnace tubes, and heating elements are not covered) |
Customization | Fluidized bed version available upon request |
Introducing the pinnacle of quenching technology: a vertical vacuum tube quenching furnace equipped with state-of-the-art molybdenum disilicide (MoSi2) heating elements. Its robust double-layer shell structure houses an 80mm-diameter corundum tube and a liquid-sealed container, specifically designed for sample quenching. This furnace embodies the perfect blend of cutting-edge innovation and practical functionality.
Experience the marvel of rapid phase transformation research with a device that facilitates instantaneous sample immersion from extreme high temperatures (up to 1700°C) into an ice-water or oil bath. Perfectly calibrated for laboratory experiments, it provides unprecedented insights into material phase transformations and microstructure properties, making it an indispensable tool for groundbreaking research.
Parameter | Specification |
---|---|
Furnace Structure | (1) Double-layer shell with air cooling system keeps surface temperature below 50°C. (2) High-purity alumina fiber insulation throughout the furnace chamber. (3) Includes one corundum tube and a stainless steel sealing flange (pre-installed with needle valve and mechanical pressure gauge). (4) Sealed liquid container connected via a corundum tube (180mm limit) ensures contamination-free sample quenching. |
Long-term Working Temp. | 800-1600°C |
Max. Working Temp. | 1700°C |
Heating/Cooling Rate | Below 1200°C: 5°C/min; Above 1200°C: 10°C/min |
Heating Zone Length | 300 mm (customizable) |
Heating Element | U-shaped MoSi2 rods |
Thermocouple | Type B (PtRh-PtRh) |
Chiller | Cools flange ends to protect seals |
Temperature Controller | 1. PID control with 30-segment programming 2. Accuracy: ±1°C 3. Over-temp/thermocouple break protection (auto power cutoff) 4. Auto-tuning function |
Furnace Tube | Material: Corundum (OD: 80mm; ID: 70mm; Length: 1000mm) Customizable. Tube plugs required before use to block thermal radiation. |
Vacuum Flanges & Valves | 1. Top: Stainless steel flange with hook, sample ejection port, and thermocouple interface 2. Bottom: Gate valve + mechanical pressure gauge 3. Bottom flange includes gas inlet |
Quenching Container | 1. Stainless steel liquid tank fixed below tube 2. Manual gate valve between tube and tank 3. Top flange: Hanging mechanism (max 1000g sample) 4. Push-release mechanism for sample quenching 5. Requires 5 PSI argon purge and open gate valve before release |
Vacuum Pump | Standard: Stainless steel vacuum flange with valves. Vacuum range: 10 Pa (mechanical pump); 10<sup>-3</sup> Pa (molecular pump) |
Kejia Electric Furnace presents the 1600°C small vertical high-temperature tube furnace, an engineering masterpiece crafted for CVD experiments involving powder surface deposition. With a furnace chamber made from high-purity alumina fiber, this furnace offers effortless operation, pinpoint temperature control, superior thermal insulation, and uniform temperature distribution. It supports atmosphere introduction and vacuum extraction, positioning it as an essential component in university laboratories and industrial research facilities. Whether synthesizing carbon nanotubes, coating crystalline silicon substrates, welding metals, or conducting heat treatments, it accommodates a full range of high-, medium-, and low-temperature CVD processes with unmatched precision.
Parameter | Specification |
---|---|
Furnace Tube Size | 960×900mm (customizable according to customer requirements) |
Heating Zone Length | 300mm (customizable according to customer requirements) |
Operating Temperature | 1500°C (long-term heating temperature) |
Maximum Temperature | 1600°C |
Temperature Control | Intelligent 30-segment programmable control (optional LCD touch screen) |
Temperature Accuracy | ±1°C |
Safety Protection | Over-temperature and thermocouple break protection |
Heating Rate | Recommended 0~10°C/min |
Heating Elements | Silicon molybdenum rods |
Chamber Material | Polycrystalline ceramic fiber, dust-free, excellent insulation, high reflectivity, uniform temperature field, strong thermal shock resistance |
Flange Connections | Equipped with two stainless steel vacuum flanges, pre-installed with mechanical pressure gauge and stainless steel stop valve |
Sealing System | Silicone O-ring compression seal between furnace tube and flange, easy to disassemble and reusable, excellent airtightness |
Vacuum Level | Dual-stage rotary vane pump: 10² Torr Molecular pump unit: 10 Torr |
Tube Material | Alumina tube |
Airtightness | 4.03×10³ Pa |
Temperature Sensor | Type B thermocouple |
Parameter | Specification |
---|---|
Furnace Tube Size | 950×1000mm (custom sizes available upon request) |
Heating Zone Length | 440mm (customizable) |
Operating Temperature | 1100°C |
Maximum Temperature | 1200°C |
Temperature Control | Intelligent 30-segment programmable control (optional LCD touch screen) |
Temperature Accuracy | ±1°C |
Safety Protection | Over-temperature and thermocouple break protection |
Heating Rate | 0~10°C/min |
Heating Elements | Resistance wire |
Chamber Material | Polycrystalline ceramic fiber - dust-free, excellent insulation, high reflectivity, uniform temperature field, strong thermal shock resistance |
Flange Connections | Standard with two stainless steel vacuum flanges, pre-installed with mechanical pressure gauge and stainless steel stop valve |
Sealing System | Silicone O-ring compression seal between tube and flange - easy disassembly, reusable, excellent airtightness (maintains pressure gauge stability for 12 hours) |
Vacuum Level | Dual-stage rotary vane pump: 10² Torr Molecular pump unit: 10 Torr |
Gas Supply System | Equipped with float flow meter; customers can control gas flow rate using float or mass flow meter |
Tube Material | Fused quartz tube |
Airtightness | 4.03×10³ Pa |
Temperature Sensor | Type N thermocouple |