Customization: | Available |
---|---|
After-sales Service: | on-Line Service |
Warranty: | One Year |
Suppliers with verified business licenses
Introducing our state-of-the-art high-temperature vertical tube furnace, expertly engineered for advanced applications. This sophisticated system encompasses a material preheating furnace, a reaction furnace, a gas preheating furnace, a control cabinet, a gas supply system, a feeding device, and a collection device. Its core is crafted from lightweight ceramic fiber, offering precision construction with an innovative sliding left-right opening mechanism for effortless access. This allows for sintering processes under varied inert atmospheres. Our premium alloy heating wires ensure rapid heating rates, outstanding high-temperature resistance, and exceptional resistance to oxidation and corrosion, delivering a swift temperature rise. Experience unmatched precision with our intelligent PID 30-segment temperature control, guaranteeing meticulous temperature regulation.
Dive into the details with our comprehensive English table-format specifications, translating technical excellence into clarity and understanding.
Component | Specification |
---|---|
Structure | Double-layer shell, manually lifted structure |
Operating Temperature | < 1000°C |
Temperature Control | PID 30-segment programmable automatic control |
Heating Element | High-quality resistance wire |
Furnace Tube Material | High-quality metal tube |
Quartz Tube Size | ≈ Φ80mm × 1000mm (customizable per customer requirements) |
Temperature Protection | Over-temperature and segment failure alarm |
Heating Rate | Adjustable 0-10 °C/min |
Measuring Element | Type N thermocouple |
Sealed Feeding Device | Sealed feed chamber: Easy-open top cover, uniform volume, pre-installed gas inlet. |
Component | Specification |
---|---|
Structure | Double-layer shell, manual vertical sliding opening; reaction furnace and gas preheating furnace can be opened independently. |
Maximum Temperature | 1200°C |
Temperature Control | PID 30-segment programmable automatic control |
Heating Element | High-quality resistance wire |
Furnace Tube Material | High-quality metal tube |
Quartz Tube Size | ≈ Outer diameter 100mm × 2500mm (customizable per customer requirements) |
Heating Zone | ≈ 1800mm, 6 zones (independently adjustable, customizable) |
Temperature Protection | Over-temperature and segment failure alarm |
Heating Rate | Adjustable 0-10 °C/min |
Measuring Element | Type N thermocouple |
Sealing System | Top: Double-layer water-cooled sealing flange with automatic feed port, manual feed port, adjustable gas sampling port (for thermocouple/gas probe), and exhaust port. Bottom: Sealing flange with gas inlet, connected to a sealed collection chamber (with pre-installed gas inlet). |
Compatible Gases | Any inert gas (high purity, positive pressure < 0.02MPa) |
Component | Specification |
---|---|
Gas Channels | Supports 4 gas sources simultaneously (Note: Inert gases recommended; user must provide safety devices for hazardous gases.) |
Flow Meter | Mass flow controller (MFC) |
Elevate your heat treatment processes with our vertical fluidized bed tube furnace, complete with feeding and discharge chambers for uninterrupted material handling. This system dramatically enhances heat treatment efficiency with a fluidized bed featuring a vertically aligned furnace tube and a strategically distributed circular heating element. It's the perfect choice for annealing and tempering small steel components, as well as vertical CVD coating applications.
Versatility at its finest, this system operates under controlled atmospheres or vacuum conditions, doubling as a conventional tube furnace. It's an ideal choice for university laboratories, research institutes, and scientific facilities seeking top-tier solutions.
Parameter | Specification |
---|---|
Heating Zone Length | Dual-zone, 400mm + 400mm (customizable per customer requirements) |
Furnace Tube Dimensions | Outer diameter: 100mm × Length: 1200mm (customizable) |
Furnace Tube Material | Stainless steel |
Automatic Feeding System | Customizable design with: - Gas inlet at tube bottom - Screw conveyor for heavy particle extraction - Top tube configuration tailored to requirements |
Parameter | Specification |
---|---|
Operating Temperature | ≤1000°C |
Temperature Sensor | Type N thermocouple |
Control System | Intelligent 30-segment PID programmable control: 1. AI-based PID adjustment with self-tuning 2. Multi-stage heating/cooling programs 3. Accuracy: ±1°C 4. Over-temperature/breakage protection (auto power cutoff) 5. Touchscreen operation with data logging/export |
Heating Rate | Recommended ≤10°C/min (adjustable per process needs) |
Heating Element | Resistance wire |
Furnace Lining Material | Dual-layer alumina fiber boards (excellent insulation, high reflectivity, uniform temperature): - 1200°C alumina fiber - 1400°C alumina fiber |
Parameter | Specification |
---|---|
Flange | Stainless steel vacuum flange (easy disassembly) |
Sealing System | O-ring compression seal between tube/flange: - Reusable, leak-tight, quick-release design |
Fluidization Zone | 1. Uniform gas distribution through reaction zone 2. Solid particles suspended by gas flow in heating zone 3. Openable furnace body for post-experiment quartz tube/particle removal |
Note | Excessive gas flow may carry particles beyond heating zone; adjust flow rate based on particle size. |
Shell Structure | Double-layer carbon steel shell with air cooling, openable design |
Furnace Orientation | Vertical structure |
Flange (Fluidized Bed) | Rubber-sealed flange (with analog vacuum gauge) |
Heating Zone Length | Five heating zones, 100mm each, total length 500mm (customizable per customer requirements) |
---|---|
Furnace Tube Size | Diameter 25mm × 1200mm (customizable per customer requirements) |
Tube Material | High-purity quartz tube with built-in 40-90μm sintered plate (customizable) |
Operating Temp. | ≤1100°C |
Max. Temperature | 1200°C |
Temperature Sensor | N-type thermocouples (5 units) |
Harness the power of AI-based PID regulation with auto-tuning and multi-segment programming, pushing the boundaries of precision.
Enjoy the convenience of PID temperature control with programmable heating and cooling stages, offering tailored temperature management.
Achieve remarkable temperature accuracy at ±1°C, ensuring consistent experimental success.
Prioritize safety with over-temperature and power failure protection, featuring automatic circuit cutoff.
Utilize the auto-tuning function for precise temperature calibration, maintaining optimal system performance.
Experience user-friendly touchscreen operation with advanced data logging and export capabilities.
Temp. Control Accuracy | ±1°C |
---|---|
Safety Protection | Over-temperature and power failure protection |
Heating Rate | Recommended 10°C/min (adjustable per process requirements) |
Heating Element | Resistance wire |
Furnace Chamber Material | Polycrystalline fiber insulation (excellent thermal insulation, high reflectivity, uniform temperature distribution) |
Flange | Stainless steel vacuum flange (easy disassembly) |
Sealing System | O-ring compression seal (reusable, high airtightness, easy removal) |
Ensure optimal reaction conditions with reaction gas flowing uniformly through the reaction zone.
Gas flow expertly suspends solid particles in the heating zone, enhancing reaction efficiency.
Convenient open-body design allows easy removal of the quartz tube and processed particles post-experiment.
Important Note: Excessive gas flow may carry particles beyond the heating zone; adjust flow rate according to particle size for optimal results.
Furnace Structure | Vertical design |
---|---|
Gas Flow Control | Equipped with argon float flow meters (flow range customizable per user needs) |
Gas Ports | Two inlets (bottom), one outlet (top) |
Parameter | Description |
---|---|
Display | LED or LED touch screen (customizable) |
Working Temperature | ≤1100°C |
Heating Rate | 0-10°C/min |
Temperature Uniformity | ±1°C |
Tube Diameter | 950×600 mm (OD) (customizable upon request) |
Heating Length | 200 mm (customizable upon request) |
Heating Elements | Resistance wire |
Tube Material | High-purity quartz tube |
Chamber Material | Alumina fiber |
Thermocouple | Type N |
Temperature Control | PID automatic control via SCR (thyristor) power regulation, with phase-angle triggering and current-limiting resistance. 30 programmable segments for precise heating/cooling rate and dwell time control. Built-in PID auto-tuning, with overheat and thermocouple break protection. Over-temperature protection and alarm for unattended operation. |
Tube Furnace Section | Display | LED or LCD touch screen (optional at extra cost) |
---|---|---|
Working Temperature | ≤1600°C | |
Heating Zone | Single heating zone, 300mm (customizable per customer requirements) | |
Heating Element | Silicon molybdenum (SiMo) rods | |
Thermocouple | Type B | |
Temperature Control Accuracy | ±1°C | |
Tube Size | OD 50mm (customizable per customer requirements) | |
Material | Alumina tube | |
Temperature Control | PID automatic control via SCR power regulation | |
Heating Program | 30-step programmable | |
Heating Rate | 0-10°C/min | |
Warranty | 1-year warranty (consumables such as heating elements are not covered) |
Parameter | Specification |
---|---|
Maximum Temperature | 1200°C |
Continuous Working Temperature | ≤1100°C |
Furnace Structure | Double-layer shell design with automatic cooling system |
Heating Rate Recommendation | ≤10°C/min |
Tube Material | High-purity quartz tube |
Chamber Material | Premium high-purity alumina polycrystalline fiber chamber formed by Japanese vacuum adsorption technology, featuring excellent insulation, high reflectivity and uniform temperature distribution |
Tube Dimensions | Tapered tube φ10φ8600mm (customizable) |
Heating Zone Length | 200mm (customizable) |
Flange | Stainless steel sealing flange with quick-disconnect design, equipped with precision needle valve |
Temperature Control System | 1. AI-based PID control with auto-tuning 2. 30-segment programmable heating/cooling 3. Control accuracy ±1°C 4. Over-temperature and thermocouple failure protection 5. Automatic temperature calibration |
Heating Element | Resistance wire |
Temperature Sensor | Type N thermocouple |
Gas Inlet/Outlet | Integrated into flange |
Multi-station Tube Furnace
This advanced furnace leverages high-purity quartz tubes as the reaction chamber, providing an impressive operating temperature range of 300°C to 1100°C. The control system of this distinguished series is recognized as internationally advanced, offering unparalleled high safety, reliability, and a user-friendly operation. It is equipped with precise temperature control (±1°C), exceptional thermal insulation, outstanding temperature uniformity, and compatibility with vacuum/atmosphere conditions.
Widely acclaimed for its use in specialized experiments and small-batch production at renowned universities, esteemed research institutes, and leading industrial enterprises.
Parameter | Specification |
---|---|
Furnace Structure | Double-shell design |
Furnace Material | High-purity alumina polycrystalline fiber |
Maximum Temperature | 1200°C |
Working Temperature | 1100°C |
Recommended Heating Rate | ≤10°C/min |
Tube Material | High-purity quartz |
Tube Dimensions | OD: 50mm × ID: 44mm × Length: 1000mm (customizable) |
Heating Zone Length | 200mm (customizable) |
Rotation Mechanism | 180° multi-angle rotatable chamber, detachable and height-adjustable |
Flange | KF quick-release stainless steel sealing flange |
Temperature Control System | <ul><li>AI-based PID control with auto-tuning</li><li>30-segment programmable heating/cooling</li><li>Control accuracy: ±1°C</li><li>Safety features:<ul><li>Over-temperature protection (auto-cutoff at >1200°C)</li><li>Thermocouple failure protection</li><li>Automatic main power cutoff with visual indicators (ON/OFF lights)</li></ul></li><li>Auto-calibration function</li></ul> |
Heating Element | Resistance wire |
Temperature Sensor | Type N thermocouple |
Parameter | Description |
---|---|
Working Temperature | ≤1300°C |
Shell Structure | Double-layered, electrostatic spray coating |
Furnace Chamber Material | High-purity polycrystalline alumina ceramic fiber, offering excellent thermal insulation, high reflectivity, uniform temperature distribution, and strong resistance to thermal expansion and contraction |
Heating Elements | Premium straight silicon carbide rods |
Heating Rate | Room temperature to 1000°C: ≤10°C/min 1000°C to 1200°C: ≤5°C/min 1200°C to 1300°C: ≤2°C/min |
Temperature Control System | PID regulation, 30-segment programmable automatic control |
Temperature Protection | Over-temperature and thermocouple break alarm |
Temperature Accuracy | ±1°C |
Temperature Sensor | S-type platinum-rhodium thermocouple |
Heating Zones | 4 zones (300+300+300+300 mm), total heating length 1200 mm, independently controllable (customizable upon request) |
Furnace Tube | Corundum tube, Φ60×1800 mm (customizable upon request) |
Door Opening Method | Front side-opening |
Feeding Method | Top feeding (continuous feeding device to be purchased separately by the buyer) |
Flange Design | Top Flange: Equipped with feed inlet, gas inlet, gas dispersion device, and mechanical vacuum pressure gauge Bottom Flange: KF interface for cyclone separator, exhaust pipe connected to safety pressure relief valve and dust filter |
Gas Control System | 2-path mass flow meters |
Precautions | 1. When introducing gas into the furnace tube, a pressure-reducing valve must be installed on the gas cylinder. 2. For sample heating experiments, it is not recommended to close the exhaust and intake valves at the furnace tube flange. If valves must be closed during heating, monitor the pressure gauge closely. If the pressure exceeds 0.02 MPa, immediately open the intake valve to prevent accidents (e.g., tube rupture, flange ejection). 3. When the temperature exceeds 900°C, the furnace tube must not be under vacuum; internal pressure should be maintained at atmospheric level. |
Parameter | Description |
---|---|
Display | LED or LED touch screen (customizable) |
Working Temperature | ≤1100°C |
Heating Rate | 0-10°C/min |
Temperature Uniformity | ±1°C |
Tube Diameter | 950×600 mm (OD) (customizable upon request) |
Heating Length | 200 mm (customizable upon request) |
Heating Elements | Resistance wire |
Tube Material | High-purity quartz tube |
Chamber Material | Alumina fiber |
Thermocouple | Type N |
Temperature Control | PID automatic control via SCR (thyristor) power regulation, with phase-angle triggering and current-limiting resistance. 30 programmable segments for precise heating/cooling rate and dwell time control. Built-in PID auto-tuning, with overheat and thermocouple break protection. Over-temperature protection and alarm for unattended operation. |
Parameter | Description |
---|---|
Heating Zone Length | 300+300 mm, dual-zone (customizable upon request) |
Furnace Tube Size | Φ50×1200 mm (customizable upon request) |
Tube Material | High-purity quartz tube with built-in 5-20μm mesh (customized) |
Working Temperature | ≤1100°C |
Maximum Temperature | 1200°C |
Thermocouple | Type N |
Temperature Control System | Intelligent 30-segment PID auto-control via thyristor power regulation with auto-tuning function Built-in overheat and thermocouple break protection |
Temperature Control Accuracy | ±1°C |
Heating Rate | Recommended 0-10°C/min |
Heating Elements | Resistance wire |
Chamber Material | Alumina ceramic fiber |
Vacuum Flange | Stainless steel vacuum flange with valves and needle valve |
Vacuum Pump | Rotary vane vacuum pump |
Gas System | Two-path float flowmeters for oxygen and acetylene, adjustable for material fluidization |
Parameter | Description |
---|---|
Furnace Structure | Vertical open-type structure with double-layer shell and automatic cooling system |
Furnace Chamber Material | High-purity alumina polycrystalline fiber vacuum-formed chamber with excellent thermal insulation, high reflectivity and uniform temperature distribution |
Continuous Working Temperature | ≤1000ºC |
Heating Rate | Recommended ≤10ºC/min |
Furnace Tube Material | 2520 alloy |
Tube Structure | Dilute phase and dense phase zones connected via transition section, with welded stainless steel side pipes/flanges, top sealed flange with explosion-proof device |
Heating Elements | Resistance wire |
Furnace Composition | Split design: rear half fixed with heating elements embedded in insulation layer, front half openable with uniformly distributed resistance wires (wires bypass side pipes in rear section) |
Dilute Phase Zone | 2520 alloy tube, 500mm heating zone (customizable), lower rear inlet port, thermocouple and mechanical pressure gauge for monitoring, top exhaust connected to dust detection system |
Exhaust End | Tube extends outside furnace body with branch thermocouple and pressure gauge |
Temperature Sensor | Type N thermocouple |
Control System | • Independent control for dense/dilute phases • AI-based PID temperature control with 30-segment programming • ±1ºC accuracy • Phase failure and filter protections • Auto-tuning function |
Instrumentation | Separate display meters for: • 2 dense phase thermocouples • 2 dilute phase thermocouples • 1 exhaust gas thermocouple (All mounted on control panel) |
This remarkable 1000°C vertical tubular furnace is engineered with a unique design that ensures rapid sample heating under vacuum or protective atmospheres. Featuring dual-side heating, it delivers superior temperature uniformity, while its vertical structure facilitates smooth exhaust ventilation. The furnace body is expertly mounted on a movable stand, offering easy access to the tube, and the top-mounted lifting mechanism is designed to cater to a myriad of heating and cooling requirements.
This state-of-the-art high-temperature fluidized bed furnace is meticulously crafted for university laboratories and industrial research facilities, making it exceptionally suitable for a range of applications:
Thorough chemical analysis of metals and ceramics.
Accurate physical property measurements.
Efficient sintering and dissolution processes.
Reliable heat treatment of small, rigid components, including annealing and calcination.
Outstanding Advantages:
Vertical gas flow design which brilliantly optimizes the removal of reaction byproducts.
Innovative dual-zone heating ensuring remarkable (±1°C) temperature uniformity.
Ergonomic access feature complemented by an adjustable height mechanism for user convenience.
Exceptional multi-process compatibility capable of seamless vacuum and atmosphere operations.
Parameter | Specification |
---|---|
Tube Dimensions | 60mm (OD) |
Furnace Door Structure | Openable design |
Shell Material | Stainless steel |
Heating Zone Length | 400×400mm |
Cooling Zone | 200-600mm (final design dependent) |
Tube Material | 310S stainless steel |
Operating Temperature | ≤1000°C |
Heating Rate | 0-10°C/min |
Furnace Lining | Alumina polycrystalline fiber |
Temperature Control | Intelligent 80-segment programmable control with independent zone regulation |
Temperature Accuracy | ±1°C |
Heating Elements | Resistance wire |
Operating Voltage | AC 220V 50Hz single phase |
Maximum Power | Final design dependent |
Thermocouple Configuration | • T1: Chamber temperature monitoring (Zone 1) • T2: Gas temperature control (400°C) • T3: Chamber temperature control (Zone 2) • T4: Load thermocouple (top position for crucible temperature measurement) |
Lifting Mechanism | Sealed vertical lift system for positioning samples between heating zone (Zone 2) and cooling zone |
The vertically designed fluidized bed tubular furnace is expertly tailored for CVD experiments focusing on powder surface deposition. It incorporates a high-purity quartz tube with a customized form, internally equipped with a quartz boat holding a porous quartz plate. The plate's pore size is customizable for specific needs. Within the furnace, the powder sample rests on this plate, and gas introduced from the bottom flows through it, suspending the particles in the heating zone, thereby facilitating precise deposition experiments.
Important Advisory: During gas injection, it's crucial to maintain meticulous control over flow rates to prevent particles from bypassing the heating zone. Therefore, adjust the gas flow carefully according to the particle size during experiments for optimal results.
Distinguished Features:
A customizable porous quartz plate crafted for enhanced fluidization efficiency.
Sophisticated gas flow control ensuring consistent particle suspension and precision.
High-quality, high-purity quartz construction guaranteeing exceptional chemical inertness and integrity.
Vertical orientation for optimized and efficient gas-solid interaction.
Parameter | Specification |
---|---|
Heating Zone Length | 440mm (customizable) |
Furnace Tube Dimensions | Φ60×1000mm (customizable) |
Tube Material | High-purity quartz tube with built-in 0.2mm porous quartz plate (customized) |
Operating Temperature | ≤1100°C |
Maximum Temperature | 1200°C |
Temperature Sensor | Type N thermocouple |
Temperature Control System | Intelligent 30-segment PID programmable control with auto-tuning function |
Temperature Accuracy | ±1°C |
Temperature Protection | Over-temperature and thermocouple break protection |
Heating Rate | Recommended 0-10°C/min |
Heating Elements | Resistance wire |
Furnace Lining Material | Polycrystalline fiber with excellent insulation, high reflectivity and uniform temperature distribution |
Flange | Detachable stainless steel vacuum flange |
Sealing System | O-ring compression seal (reusable, good airtightness) |
| Fluidization Zone Attributes | 1. Uniform distribution of reaction gas across the reaction zone.
2. Gas flow suspends solid particles effectively in the heating zone.
3. User-friendly openable design facilitates easy removal of the tube after experiments. |
| Crucial Notice: | Precise gas flow adjustments are imperative according to particle size to avoid unintended particle bypass of the heating zone |
Additional Features | |
---|---|
Pressure Gauge | Mechanical pressure gauge at gas outlet |
Shell Structure | Double-walled with air cooling system, openable design |
Furnace Structure | Vertical configuration |
Flow Meter | Hydrogen float flow meter for precise fluidization control |
Exceptional Benefits:
Customizable porous plate crafted for superior fluidization efficiency.
Precision temperature control system delivering impeccable (±1°C) temperature accuracy.
Quick-access design ensuring effortless sample handling.
Versatile gas flow control designed to accommodate a wide range of particle sizes effectively.
Parameter | Specification |
---|---|
Max Temperature | 1200°C |
Uniform Heating Zone | 120mm × 440mm (Customizable upon request) |
Tube Diameter | 100mm (Customizable upon request) |
Number of Heating Zones | Single zone (Customizable upon request) |
Insulation Material | High-purity alumina fiber lining, reducing heat loss and ensuring high-temperature stability. |
Shell Material | High-quality cold-rolled steel plate, electrostatic powder-coated for a hard and durable finish with excellent rust resistance. |
Furnace Door | Side-opening |
Main Controller | PID 30-segment programmable control Over-temperature alarm Thermocouple break alarm |
Temperature Sensor | Type N thermocouple |
Heating Element | Resistance wire |
Heating Rate | 0-10°C/min |
Experience cutting-edge technology with this advanced equipment featuring a robust resistance wire as the heating element. The innovative double-layer shell design, paired with a 30-segment programmable temperature control instrument, ensures precise phase-shift triggering and thyristor control. Constructed with top-grade alumina polycrystalline fiber material, the furnace chamber is built to last, complemented by a durable stainless steel furnace tube. The ingenious openable furnace door design facilitates effortless tube replacement, promising a seamless operation every time.
Unleash the potential of high-performance thermal processing with this high-temperature vertical tube furnace. Boasting impeccable uniform temperature distribution, it maintains low surface temperatures while achieving rapid heating and cooling rates. Its remarkable energy efficiency sets a new standard in laboratory equipment, making it an indispensable asset for precision-driven applications.
Parameter | Specification |
---|---|
Furnace Type | Vertical, openable |
Furnace Material | Alumina refractory fiber |
Heating Element | Resistance wire |
Working Temperature | ≤1000°C |
Heating Rate | Adjustable (0~10°C/min) |
Heating Zones | Dual zones (preheating zone + high-temperature zone) |
Total Zone Length | 200+200 / 300+300 / 400+400 mm (customizable upon request) |
Tube Material | Custom stainless steel tube |
Tube Diameter | 40, 50, 60, 80, 100, 120, 200 mm (customizable upon request) |
Control Mode | Multi-segment intelligent PID programmable control, (reserved communication interface) |
Metal Tube Length | 440mm + 380mm (customizable upon request) |
Temperature Sensor | Type N thermocouple |
After-Sales Service | 1-year warranty, lifetime maintenance (consumables such as high-temperature sealing rings, furnace tubes, and heating elements are not covered) |
Customization | Fluidized bed version available upon request |
Introducing the pinnacle of high-temperature processing-the Vertical Vacuum Tube Quenching Furnace. Equipped with superior molybdenum disilicide (MoSi2) heating elements and a sturdy double-layer shell construction, it features an expansive 80mm-diameter corundum tube. The addition of a liquid-sealed container enhances its capabilities for unparalleled sample quenching.
Revolutionize your experimental procedures with this innovative device, designed to plunge samples from extreme high temperatures (up to 1700°C) into an ice-water or oil bath during experiments. Perfectly engineered for laboratory research, it is key in unlocking new insights into material phase transformations and microstructure properties.
Parameter | Specification |
---|---|
Furnace Structure | (1) Double-layer shell with air cooling system keeps surface temperature below 50°C. (2) High-purity alumina fiber insulation throughout the furnace chamber. (3) Includes one corundum tube and a stainless steel sealing flange (pre-installed with needle valve and mechanical pressure gauge). (4) Sealed liquid container connected via a corundum tube (180mm limit) ensures contamination-free sample quenching. |
Long-term Working Temp. | 800-1600°C |
Max. Working Temp. | 1700°C |
Heating/Cooling Rate | Below 1200°C: 5°C/min; Above 1200°C: 10°C/min |
Heating Zone Length | 300 mm (customizable) |
Heating Element | U-shaped MoSi2 rods |
Thermocouple | Type B (PtRh-PtRh) |
Chiller | Cools flange ends to protect seals |
Temperature Controller | 1. PID control with 30-segment programming 2. Accuracy: ±1°C 3. Over-temp/thermocouple break protection (auto power cutoff) 4. Auto-tuning function |
Furnace Tube | Material: Corundum (OD: 80mm; ID: 70mm; Length: 1000mm) Customizable. Tube plugs required before use to block thermal radiation. |
Vacuum Flanges & Valves | 1. Top: Stainless steel flange with hook, sample ejection port, and thermocouple interface 2. Bottom: Gate valve + mechanical pressure gauge 3. Bottom flange includes gas inlet |
Quenching Container | 1. Stainless steel liquid tank fixed below tube 2. Manual gate valve between tube and tank 3. Top flange: Hanging mechanism (max 1000g sample) 4. Push-release mechanism for sample quenching 5. Requires 5 PSI argon purge and open gate valve before release |
Vacuum Pump | Standard: Stainless steel vacuum flange with valves. Vacuum range: 10 Pa (mechanical pump); 10<sup>-3</sup> Pa (molecular pump) |
Witness the future of CVD experimentation with the 1600°C Small Vertical High-Temperature Tube Furnace, a masterpiece by Kejia Electric Furnace. Specially developed for powder surface deposition, it features a high-purity alumina fiber furnace chamber, delivering straightforward operation alongside high precision in temperature control. It offers superior thermal insulation and uniform chamber temperature distribution, coupled with capabilities for atmosphere introduction and vacuum extraction. This vertical tube furnace is an asset for university laboratories and industrial research facilities, supporting high-, medium-, and low-temperature CVD processes. Its versatility extends to the synthesis of carbon nanotubes, thin-film coating, diffusion welding, and more.
Parameter | Specification |
---|---|
Furnace Tube Size | 960×900mm (customizable according to customer requirements) |
Heating Zone Length | 300mm (customizable according to customer requirements) |
Operating Temperature | 1500°C (long-term heating temperature) |
Maximum Temperature | 1600°C |
Temperature Control | Intelligent 30-segment programmable control (optional LCD touch screen) |
Temperature Accuracy | ±1°C |
Safety Protection | Over-temperature and thermocouple break protection |
Heating Rate | Recommended 0~10°C/min |
Heating Elements | Silicon molybdenum rods |
Chamber Material | Polycrystalline ceramic fiber, dust-free, excellent insulation, high reflectivity, uniform temperature field, strong thermal shock resistance |
Flange Connections | Equipped with two stainless steel vacuum flanges, pre-installed with mechanical pressure gauge and stainless steel stop valve |
Sealing System | Silicone O-ring compression seal between furnace tube and flange, easy to disassemble and reusable, excellent airtightness |
Vacuum Level | Dual-stage rotary vane pump: 10² Torr Molecular pump unit: 10 Torr |
Tube Material | Alumina tube |
Airtightness | 4.03×10³ Pa |
Temperature Sensor | Type B thermocouple |
Parameter | Specification |
---|---|
Furnace Tube Size | 950×1000mm (custom sizes available upon request) |
Heating Zone Length | 440mm (customizable) |
Operating Temperature | 1100°C |
Maximum Temperature | 1200°C |
Temperature Control | Intelligent 30-segment programmable control (optional LCD touch screen) |
Temperature Accuracy | ±1°C |
Safety Protection | Over-temperature and thermocouple break protection |
Heating Rate | 0~10°C/min |
Heating Elements | Resistance wire |
Chamber Material | Polycrystalline ceramic fiber - dust-free, excellent insulation, high reflectivity, uniform temperature field, strong thermal shock resistance |
Flange Connections | Standard with two stainless steel vacuum flanges, pre-installed with mechanical pressure gauge and stainless steel stop valve |
Sealing System | Silicone O-ring compression seal between tube and flange - easy disassembly, reusable, excellent airtightness (maintains pressure gauge stability for 12 hours) |
Vacuum Level | Dual-stage rotary vane pump: 10² Torr Molecular pump unit: 10 Torr |
Gas Supply System | Equipped with float flow meter; customers can control gas flow rate using float or mass flow meter |
Tube Material | Fused quartz tube |
Airtightness | 4.03×10³ Pa |
Temperature Sensor | Type N thermocouple |